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The Turbulent flow of an incompressible fluid basically satisfies
the familiar Reynolds equations (see, for example, [1]). How'ever,
because of their extreme complexity, it has not been possible to solve
these equations. We are therefore confronted with the problem of
deriving other equations which are simpler, but which retain all the
fundamental features of turbulent flow, and which—to a greater extent
than the Reynolds equations—lend themselves to investigation and
approximate solution.

Below we present the derivation of such equations. The deriva-
tion is based on the assumption that the wavelength A of the turbulent
pulsations is significantly smaller than the dimension L of the system.
This assumption permits us to write a system of ordinary first-order
differential equations for the Fourier amplitude of the rapidly changing
component of a velocity field, and then-after introduction of the
distribution function—to derive an equation for the distribution func-
tion.

The equation for an averaged velocity field does not essentially
differ from the corresponding Reynolds equation.

The derived system of equations can be used for a numerical cal-
culation of both the spectrum of small-scale pulsations for a specified
average field and the average field itself, the latter formed as a re-
sult of these pulsations.

1. Pulsations with a small wavelength. Let the flow of the fluid be
described by the Reynolds number R. Then, for the wave numbers of
these pulsations (perturbations) which are rapidly attenuated as a result
of viscosity, we find the following inequality to be valid: k = 2n/A =
=z R/L, where L denotes the dimensions of the system. Viscosity no
longer exerts a significant effect on perturbations with wave numbers
smaller than R/L, but these are attenuated because of the stability of
the laminar flow, so long as R< R, where R_ is the critical Reynolds
number. Generally speaking, the nonviscous mechanism of attenuation
is effective in the case of perturbations whose wave numbers do not
exceed R, /L.

As soon as R exceeds R, we find nonattenuating perturbations with
wave numbers in the interval R/L > k> R /L.

However, since it is usual that R, & 1000, it follows that the
perturbations exhibiting the smallest wavelength relative to the dimen-
sions of the system are the ones responsible for the onset of turbulence.

Let us assume that perturbations of such large wave numbers pre-
dominate not only at the initial stage of the turbulization, but also in
a system with developed turbulence. In this case, the velocity u(r,t)
and the pressure p(r,t) of the turbulent flow can be presented in the
form of the sum of the two terms
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The functions U(r, t) and P(r, t) depend smoothly on the coordinates
and on time, varying significantly only at distances commensurate with
the characteristic dimensions of the system, whereas u'(r,t) and p'(r, t)
oscillate rapidly in space and time.
Let us introduce the Lagrange variables associated with the velocity
field:

r=x (o, ), U (ro, 8)=(0r/d%),, .

Let us seek u'(ry, t) and p'(ry, t) in the form
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The amplitudes u(k, 1y, t) and p(k, 1y, £) contain only a smooth
dependence onr,, with the strong dependence contained in the expo-
nential factors.

The volume V for which expansions (1.2) are valid is chosen in
some vicinity of the point ry. It must be sufficiently small in com-
parison with the dimensions of the system in order for all of the smooth-~
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ly varying functions within the system to be treated as constant. At the
same time, its linear dimensions must be sufficiently large in com-
parison with the wavelength of those perturbations which are intensively
attenuated as a result of viscosity. This choice of the volume V, is
possible if the Reynolds number for the turbulent flow under considera-
tion is large.

2. The equations of motion for the Fourier amplitude and the
average field. The functions u(r,t) and p(r, t) are the solutions for the
Navier-Stokes equations [2] and for the continuity equation

dujdt + (u\y)u = —p-* grad p + vAu, divu=10. 2.1)

Here p is the {luid density and v is the kinematic viscosity.

To find the system of equations which is satisfied by the Fourier
amplitudes of expansions (1.2), let us substitute (1.1) into (2.1), and
after having multiplied the left- and right-hand members by
exp (~iqr,), we will integrate the resulting equation over the volume
V,- Restricting ourselves only to the highest terms of the expansion in
powers of kL, we obtain
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The derivatives of the functions U, t) with respect to r in Eq. (2.2)
should be taken at the point r = r(ry, t). The vector q' = q'(q, I, t) re-
sulting from the transition to Lagrange variables is defined as follows:
qx' = qxaxo/ax + qyayo/ax + q702, /0%, and, analogously, the com-
ponents qy ahd ay

It follows from continuity equation (2.1) that

div U=0 (" u(q, ) =0,

Since the component of the vector u(q, t) along q' is equal to zero,
we can assume that

uy (q, t) = cos 0’ cos ¢’ a (g, ) — sin ¢’ & (q, 1),
uy (g, ) = cos 8'sin ¢’ a (q, &) +cos ¢’ b (g, 1), (2.3)
u, (4, t) = —sin 6’ a (q, t).

Here 6' and ¢ are the angles of the vector q' in a spherical system
of coordinates.

The transition to the equations for a(q, t) and b(qg,t) can be ac-
complished if (2.3) is substituted into (2.2) and if we eliminate p(q, t):
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Here 6, ¢}, and 6,, ¢, are the angles of the vectors k, and k;.

System (2.4) permits us to solve the problem of the behavior for
perturbations whose wavelength is substantially smaller than the di-
mensions of the system. If the amplitudes of these perturbations are
small (for example, at the initial stage of their development), the
quadratic terms with respect to the amplitudes can be neglected in
(2.4) and we obtain a simple system of linear equations. In investigat-
ing this linearized system, for each field U(r,, t) it is not difficult to
find that region of wave numbers which belongs to the perturbations
increasing with time, nor is it difficult to establish the rate of their
growth,

The equation for the average field of velocities U, t) can be
obtained if we substitute (1.1) into (2.1), and if we then integrate over
the volume V,

8,10t + U\ BU, | 8z == — o™ 0P [ 0w, — 3 /0w, T, (2.0)
where, for example,
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The system of (2.4) and (2.5) is thus closed.

8. The equation for the distribution function. If we know the initial
conditions and the function U(r,t), with system (2.4) we can—in
principle—trace the evolution of the perturbations a(q, t) and b(q, t).
However, in actual fact, to the extent that we are dealing with per-
turbations whose wavelengths are substantially smaller than the di-
mensions of the system, it is at no time possible to know the initial
data exactly, and we can speak essentially only of the probability with
which certain values can be anticipated for the initial amplitudes
a(q, 0) and b(q, 0).

It is therefore necessary to introduce the distribution function
Fag,, bql; .o Ogm bqn; »s» 1) and to examine an entire set of systems
differing from each other only in the magnitudes of the amplitudes for
the initial perturbations. The distribution function must satisfy the
partial differential equation

aF ] 0
T+2[EL(aq>+0—l,qL<bq>]F:0, @1
q

whose characteristics are the equations of (2.4). Hence it follows that
L(ag) and L(bq) represent the right~hand members of the first and
second equations in (2.4), respectively.

Consequently, to obtain exhaustive data on the development of
perturbations in a turbulent flow, we must find the distribution function
which satisfies Eq. (3.1) and the initial condition

F (g, bgi- -3 0=
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4. The case of spherical-symmetric motion. For the case of
spherical -symmetric motion, when

re==r{ry 1) rforg = re¥ir®,

the coefficients Aj) in Eqs. (2.4) have the form

Piivdivg — (1 =3sind) U/,
Ap= —vq?4 ivdivg — U/~

where &' is the angle between the vectors q' and r; a(q, t) and b(g, t)
are determined at each point in the coordinate system with the z-axis
along r. Since in this case
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q=q ‘[ (:—0> cos§ —I—({i> sin®¢ |
(ro/ritsin? ¢

(r/roycos®d & (ro/ r?sin? ;

where q, ¢, ¥, are the spherical coordinates, so that & —= 0; if the

velocity is directed from the center (U > 0,r/r)~> ) and & ~* 7/2;

if the velocity is directed to the center U< 0, r/r; = 0.

The coefficients Ay and A,, for U> 0 are negative if r /g is suf-
ficiently large, independent of the direction of ¢, and all of the per-
turbations are therefore attenuated, and the motion is not made turbulent.

With U< 0 and small r/r,, it is only the coefficient A;; that is
negative for all directions of the vector q. The coefficient Ay, remains
positive in that region of wave numbers in which it is possible to
neglect viscosity. Consequently, in the case of convergent spherical-
symmetric motion, all amplitudes a(q, t) are attenuated at some in-
stant of time, whereas the amplitudes b(q, t), corresponding to a
certain region of wave numbers g, increase in size.

The growth of the amplitudes b(q, t) may restrain nonlinear inter-
action leading to an exchange of energy between the components of
a(d, t) and b(q, t). However, as follows from Eq. (2.4) and as /1,
diminishes, this exchange can be neglected, since the terms responsible
for this exchange are found to be cos &' = (r/ro)3 times smaller than
the terms responsible for the exchange of energy between the ampli-
tudes b(q, t) referred to various q. If, in addition, the viscosity in the
systemn is extremely small, we have
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Finally, omitting the terms which are quadratic with respect to
a(g, 1), we write the equation for the velocity Uy, t) which follows
from (2.5): )

AU jdt = —p~1 0P/dr + 2 T)r, 4.2)

With the aid of system (4.1) and (4.2) we can determine the in~
fluence exerted by turbulization on the collapse of the spherical cavity
(for the solution of this problem without consideration of trubulization,
see, for example, [2]). Let us present the expression for the velocity
of the inside boundary in the cavity (which is of interest in this prob-
lem}

(GRY o Lo (B (4R
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where R and dR/dt are, respectively, the radius and velocity of the
cavity boundary at the instant of time t; R, and dR,/dt denote the
same quantities, but at the initial instant of time: Tg is the initial
energy of the small-scale motion per unit mass; Pyis the pressure at infinity.
It follows from (4.3) that turbulization—if its initial value is suf-
ficiently small=does not alter the law governing the motion of bound-
ary of a spherical cavity in an incompressible fluid for R < R, where
dR/dt ~ 1/R7%,
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